

QuantumDNA

Наборы для количественной и качественной оценки геномной ДНК человека

Номера по каталогу

QS001 QS002 QS003 QS004

Руководство к программированию амплификатора Bio-Rad CFX96

вер. 30 августа 2017 г.

Программирование амплификатора Bio-Rad CFX96

Включение прибора и запуск программного обеспечения

- 1. Включить компьютер.
- 2. Включить питание прибора Bio-Rad CFX96.
- 3. Запустить программное обеспечение прибора **Bio-Rad CFX Manager 3.1**.

Программирование прибора

В окне «Мастер запуска» (Startup Wizard) нажать кнопку «Определяет пользователь» (User-defined) или выбрать пункт главного меню Файл > Создать > Прогон (File > New > Run).

Создание протокола ПЦР

В открывшемся окне «Создать прогон» (Run Setup) перейти на вкладку «Протокол» (Protocol).

Открыть созданный ранее шаблон – кнопка «Выбрать» (Select Existing) или ввести параметры нового шаблона – кнопка «Создать» (Create New).

Готовый шаблон протокола можно скачать со страницы сайта ЗАО «Евроген»: http://www.evrogen.ru/products/QuantumDNA/QuantumDNA.shtml

В окне «Редактор протокола – Создать» (Protocol Editor – New) (рис. 3):

Этап	Температура, °С	Продолжи- тельность	Считывание флуоресценции		
Инкубация (Hold)	95	3 мин	_		
45 циклов	95	30 c	-		
(Cycling)	60	30 c	FAM, HEX		
	72	30 c	-		

Задать параметры ПЦР (рис. 1, А):

В поле «Объем пробы» (Sample Volume) ввести значение 25 мкл (см. рис. 1, Б).

Нажать кнопку «Ок» (ОК) и сохранить шаблон программы амплификации (см. рис. 1, В).

Примечание: созданный шаблон рекомендуется использовать при постановках ПЦР с наборами QuantumDNA.

Рисунок 1 – окно «Редактор протокола – Создать» (Protocol Editor – New).

Разметка плашки

В окне «Создать прогон» (Run Setup) во вкладке «Плашка» (Plate) ввести параметры нового шаблона плашки – кнопка «Создать» (Create New) или открыть созданный ранее шаблон – кнопка «Выбрать» (Select Existing).

Готовый шаблон протокола можно скачать со страницы сайта ЗАО «Евроген»: http://www.evrogen.ru/products/QuantumDNA/QuantumDNA.shtml

В окне «Редактор плашки – Создать» (Plate Editor – New) (рис. 2):

 Задать используемые флуорофоры: нажать кнопку «Выбрать флуорофоры» (Select Fluorophores) (см. рис. 2, А) и выбрать каналы детекции флуоресценции: FAM и HEX (см. рис. 2, Б).

Для удобства в столбце «Цвет» (Color) можно задать более контрастные цвета для выбранных флуорофоров.

3	9		10	11	12		Select Fluorophores			iores	
ſ	Select Flu	oropl	nores	_			A	las.			×
		Ch	annel	Fluoroph	nore 6	Z	Selected		Ca	blor	
	1			FAM			V				
L				SYBR							
	2			HEX			V				
L				TET							
				Cal Gold 540)						
				VIC				j			
	3			ROX							
				Texas Red							
L				Cal Red 610)						
	4			Cy5				Í			
				Quasar 670							
	5			Quasar 705							
								0	К	Canc	e

Рисунок 2 – окно «Выбрать флуорофоры» (Select Fluorophores).

Выделить все лунки, в которые будут установлены пробирки или плашка. Выбрать тип образцов в поле «Тип пробы» (Sample Type) (см. рис. 3, А) для всех лунок – «Неизвестен» (Unknown). В поле «Загрузить» (Load) отметить оба канала флуоресценции: FAM и HEX (см. рис. 3, Б).

Выделить лунки со Стандартами ДНК 1, 2, 3. Выбрать тип образцов – «Стандарт» (Standard);

Выделить лунки с контрольными образцами без матрицы. Выбрать тип образцов – «Контроль без матрицы» (NTC).

Задать названия мишеней (см. рис. 3, В):

 Последовательно выделить лунки с каждым типом используемого 5X реагента, в поле «Имя мишени» (Target Name), канал флуоресценции FAM, ввести 91, 156 или 211 соответственно. После каждого ввода названия необходимо нажать клавишу Enter.

ВНИМАНИЕ! ВВЕДЕННЫЙ ПАРАМЕТР ОТОБРАЗИТСЯ ТОЛЬКО ПОСЛЕ НАЖАТИЯ НА КЛАВИАТУРЕ КЛАВИШИ ENTER.

При использовании скаченного шаблона плашки, имя мишени можно выбрать из выпадающего списка.

Рисунок 3 – окно «Редактор плашки - Создать» (Plate Editor – New).

Задать имена образцов в поле «Имя пробы» (Sample Name) (см. рис. 3, Г):

- выделить все образцы с одинаковым именем,
- для исследуемых образцов ввести названия образцов,
- для Стандартов ДНК 1, 2, 3 Std-1, Std-2 и Std-3 (или St1, St2, St3) соответственно,
- для контрольных образцов без матрицы NTC.

ВНИМАНИЕ! ВВЕДЕННЫЙ ПАРАМЕТР ОТОБРАЗИТСЯ ПОСЛЕ НАЖАТИЯ НА КЛАВИАТУРЕ КЛАВИШИ ENTER.

Лунки с одним образцом, но разными типами используемого 5X реагента могут иметь одинаковые имена.

Объединить повторности исследуемых образцов и Стандартов ДНК в группы (см. рис. 3, Д, рис. 4):

- выделить все лунки с одинаковым типом образца (например, «Неизвестен» (Unkown)),
- нажать кнопку «Серия реплик» (Replicate Series),
- в поле «Р-р группы реплик» (Replicate Size) ввести значение 2,

- выбрать ориентацию расположения повторностей образца «Горизонт.»/«Вертик.» (Horizontal/Vertical),
- нажать кнопку «Применить» (Apply).

Load 91 HEX 91 HE 91 HE 156 HEX 156 HE 211 HEX 211 HEX 211 HEX FAM #8 #12 NTC NTC Unk 211 HEX #3 156 HEX 156 HĐ #3 211 HEX #8 91 HEX 91 HĐ HEX Load 91 HEX 156 HEX 211 HEX 211 HEX Std-Std 156 HEX Std-3 211 211 HE 211 HEX Replicate Size: 2 Starting Replicate #: 1 * 156 HEX Std-3 Horizontal #2 #6 Vertical 11 156 HD #2 211 HD 156 HD Cancel Apply # 211 HD 211 HEX Experiment Settings. HE #1 Std-#1 Clear Replicate # 91 HEX #5 15 HEX #9 91 HEX #1 156 HEX Std-1 156 HD 211 HEX Std-1 211 HEX 211 HEX #5 211 HE 91 HEX HEX #1 Clear Wells

Повторить для оставшихся двух типов образцов.

Рисунок 4 — всплывающее окно кнопки «Серия реплик» (Replicate Series) в окне Редактора плашки (Plate Editor).

ВНИМАНИЕ! СОЗДАНИЕ ГРУПП ОБРАЗЦОВ ТРЕБУЕТСЯ ДЛЯ КОРРЕКТНОГО АВТОМАТИЧЕСКОГО РАСЧЁТА КОНЦЕНТРАЦИИ – ЗНАЧЕНИЯ КОНЦЕНТРАЦИЙ ВНУТРИ ГРУППЫ УСРЕДНЯЮТСЯ И ОПРЕДЕЛЯЕТСЯ СТАНДАРТНОЕ ОТКЛОНЕНИЕ ДЛЯ ТЕХНИЧЕСКИХ ПОВТОРНОСТЕЙ.

Ввести концентрации Стандартов:

- Для отображения значений Стандартов в десятичном виде снять флажок в пункте меню Настройки > Числовое представление > Экспоненциальное представление (Setting > Number Convention > Scientific Notation) (см. рис. 5, А).
- Выделить Стандарты ДНК-1. В поле «Концентрация» (Concentration) в канале FAM (в выпадающем списке «<Bce>» (<All>) выбрать канал FAM) (см. рис. 5, Б) ввести 0,5 и нажать клавишу Enter.
- Выделить Стандарты ДНК-2. В поле «Концентрация» (Concentration) в канале FAM ввести значение 3,5 и нажать клавишу Enter.
- Выделить Стандарты ДНК-3. В поле «Концентрация» (Concentration) в канале FAM ввести значение 25 и нажать клавишу Enter.
- Выделить все Стандарты ДНК (1,2,3). В поле «Концентрация» (Concentration) в канале НЕХ (в выпадающем списке «<Bce>» (<All>) выбрать канал НЕХ) ввести 1 и нажать клавишу Enter.

ВНИМАНИЕ! ВВЕДЕННЫЙ ПАРАМЕТР ОТОБРАЗИТСЯ ПОСЛЕ НАЖАТИЯ НА КЛАВИАТУРЕ КЛАВИШИ ENTER.

File Settings Editing Tools ?															
H	1 Pla Pla	te Size te Type	,	Channel	s 🔻	a Wel	l Groups	💐 Trace	Styles	💷 Spreadsh	eet View/In	porter	😫 Plate Loading Guide		
	Nu	mber Conv	ention 🕨	✓ Sc	ientific Nota	ation	7	8	9	10	11	12	Select Fluorophores ^		
A	Un	Units •		91	91 156		UNK 13 Unk	Unk-21 156	Ink-21 NTC-3 156 211	Unk-25 211	Unk-29 211	Unk-33 211	Unk-33 211		
	NTC	#EX #3	#8	#12	NTC	#EX #3		#12	NTC	#3	#8	#12	Sample Ty	pe Standard 🔻	
	NTC-1	Unk-1	Unk-5	Unk-9	NTC-2	Unk-13	Unk-17	Unk-21	NTC-3	Unk-25	Unk-29	Unk-33			
в	91	91	91	91	156	156	156	156	211	211	211	211	Land	Transf Marrie	
-	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX	Load	l'arget ivame	
	Std-1	Hok-2	#8	F12	Std-4	Ink-14	#8	#12 Hok-22	Std-7	Ilak-26	#s	#12 Unk-34	🔽 FAM	91 -	
	91	91	91	91	156	156	156	156	211	211	211	211	-		
L C	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX	V HEX	<none> 👻</none>	
	Std-3	#3	#7	#11	Std-3	#3	#7	#11	Std-3	#3	#7	#11			
	Std-1	Unk-2	Unk-6	Unk-10	Std-4	Unk-14	Unk-18	Unk-22	Std-7	Unk-26	Unk-30	Unk-34		-	
D	91	91 HEV	91	91	156 HEY	156 HEY	156 HEY	156 HEV	211	211	211	211	Load	Sample Name **	
	Std-3	#3	#7	#11	Std-3	#3	#7	#11	Std-3	#3	#7	#11		94.1	
	Std-2	Unk-3	Unk-7	Unk-11	Std-5	Unk-15	Unk-19	Unk-23	Std-8	Unk-27	Unk-31	Unk-35	•		
F	91	91	91	91	156	156	156	156	211	211	211	211			
-	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX	Load	Beolicate #	
	Sto-2	Jak-2	Jak-7	F10	510-2	Unic 15	Jak 10	#10	Sto-2	Jak-27	Fb Unke 24	#10 Unke25			
	91	91	91	91	156	156	156	156	211	211	211	211		3 🔶	
F	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX			
	Std-2	#2	#6	#10	Std-2	#2	#6	#10	Std-2	#2	#6	#10		Replicate Series	
	Std-3	Unk-4	Unk-8	Unk-12	Std-6	Unk-16	Unk-20	Unk-24	Std-9	Unk-28	Unk-32	Unk-36			
G	91	91	91	91	156	156	156	156	211	211	211	211	Land	Constanting	
	Std-1	#1	#5	#9	Std-1	#1	#5	#9	Std-1	#1	#5	#9	Load	Concentration:	
	Std-3	Unk-4	Unk-8	Unk-12	Std-6	Unk-16	Unk-20	Unk-24	Std-9	Unk-28	Unk-32	Unk-36		5.00E-01	
н	91	91	91	91	156	156	156	156	211	211	211	211		0,002.01	
	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX	HEX		<al></al>	
	Std-1	#1	#5	#9	Std-1	#1	#5	#9	Std-1	#1	#5	#9			
														DIFAM	
HEX *															
Plate Type: BR Clear 🕘 Target Name 🔿 Concentration 🖉 Sample 🔝 Well Group 📳 Biological Set 🔄 Well Note 🛛 🕖 OK Cancel															

Рисунок 5 – пункт меню Настройки > Числовое представление > Экспоненциальное представление (Setting > Number Convention > Scientific Notation) и поле «Концентрация» (Concentration).

Нажать кнопку «Ок» (ОК) и сохранить шаблон плашки.

Созданный ранее шаблон можно использовать повторно, в случае совпадения разметки плашки.

Запуск эксперимента

- 1 В окне «Создать прогон» (Run Setup) выбрать вкладку «Начать прогон» (Start Run).
- 2 Нажать кнопку «Открыть крышку» (Open Lid) или нажать кнопку открытия крышки на передней панели прибора.
- 3 Поместить в амплификационный блок плашку или пробирки.
- 4 Проверить соответствие положения проб в блоке и разметки на вкладке программы «Плашка» (Plate).
- 5 Нажать кнопку «Закрыть крышку» (Close Lid) или нажать кнопку закрытия крышки на приборе.
- 6 Нажать кнопку «Начать прогон» (Start Run) программа предложит выбрать место хранения и название будущего файла с результатами.

После нажатия кнопки «Сохранить» начнётся выполнение программы.

Наборы и сервисы Евроген

Выделение и очистка нуклеиновых кислот 🖽 🕨

Реактивы для ПЦР и ПЦР-РВ 🔳 >>>

Синтез и амплификация кДНК Ш>>> С

Клонирование ДНК 🔳 >>> 🖸 >>>

Выявление контаминации микоплазмой 🖽 >>>

Оценка ДНК 🔳 >>>

Нормализация кДНК Ш>>> С>>>

Практикум по генной инженерии Ш>>>

Генотипирование Ш>>>

Синтез олигонуклеотидов и зондов
С

Секвенирование по Сэнгеру С

NGS секвенирование **С>>>**

Синтез генов 🔼 >>>

Сайт-направленный мутагенез 🖸 >>>

Консультация по продуктам: support@evrogen.ru

Подробную информацию о наших наборах и сервисах можно получить на сайте www.evrogen.ru

> ЗАО Евроген Москва 117997 ул. Миклухо-Маклая 16/10, к. 15 Тел.: +7 (495) 784-7084 order@evrogen.ru www.evrogen.ru

на ссылка на страницу НАБОРА

ссылка на страницу СЕРВИСА