

pKillerRed-mem vector

The vector sequence has been compiled using the informa-tion from sequence databases, published literature, and other sources, together with partial sequences obtained by Evrogen. This vector has not been completely sequenced.

or vector sequence, please visit our Web site at

Product	Cat.#	Size	
pKillerRed-mem vector	FP966	20 μ g	
Vector type	mammalian expr	ession vector	
Reporter	KillerRed		
Reporter codon usage	mammalian		
Promoter for KillerRed	P _{CMV IE}		
Host cells	mammalian		
Selection	prokaryotic - kanamycin eukaryotic - neomycin (G418)		
Replication	prokaryotic - pUC ori eukaryotic - SV40 ori		
Use	Expression of membrane-targeted KillerRed in mammalian cells under the control of CMV promoter; source of membrane-targeted KillerRed coding sequence		

Location of features

P_{CMV IE}: 1-589 Enhancer region: 59-465 TATA box: 554-560 Transcription start point: 583 KillerRed-mem fusion Start codon (ATG): 679-681

Neuromodulin N-terminal sequence (mem): 679-738 Start of KillerRed coding sequence: 739-741

Stop codon: 1450-1452

SV40 early mRNA polyadenylation signal Polyadenylation signals: 1606-1611 & 1635-1640

mRNA 3' ends: 1644 & 1656

f1 single-strand DNA origin: 1703-2158 Eukaryotic promoter for expression of Kan^r gene -35 region: 2220-2225: -10 region: 2243-2248

Transcription start point: 2255 SV40 origin of replication: 2499-2634

SV40 early promoter

Enhancer (72-bp tandem repeats): 2332-2403 & 2404-2475

21-bp repeats: 2479-2499, 2500-2520 & 2522-2542

Early promoter element: 2555-2561

Major transcription start points: 2551, 2589, 2595 &

Kanamycin/neomycin resistance gene

Neomycin phosphotransferase coding sequences: Start codon (ATG): 2683-2685; Stop codon: 3475-3477 G->A mutation to remove Pst I site: 2865

C->A (Arg to Ser) mutation to remove BssH II site: 3211 Herpes simplex virus (HSV) thymidine kinase (TK) polyadenylation signal

Polyadenylation signals: 3713-3718 & 3726-3731 pUC plasmid replication origin: 4062-4705

Vector description

pKillerRed-mem is a mammalian expression vector encoding membrane-targeted KillerRed. KillerRed localized on cellular membrane can be used for effective light-induced cell killing.

Note: Comparing to the mitochondrially targeted KillerRed, irradiation of membrane-localized KillerRed leads to even more effective and fast cell death (within 10-30 min). Moreover, membrane-targeted KillerRed was shown to be suitable for the light induced cell killing within a developing

KillerRed codon usage is optimized for high expression in mammalian cells (humanized) [Haas et al. 1996]. Membrane localization signal (MLS) of neuromodulin is linked to the KillerRed N-terminus. The MLS (Nterminal 20 amino acid residues of neuromodulin) contains a signal for posttranslational palmitoylation of cysteines 3 and 4 that targets KillerRed to cellular membranes [Skene and Virág 1989].

pKillerRed-mem can be used as a source of MLS-KillerRed hybrid sequence. The vector backbone contains unique restriction sites that permit it excision and further insertion into expression vector of choice.

Note: The plasmid DNA was isolated from dam + .methylated E.coli. Therefore some restriction sites are blocked by methylation. If you wish to digest the vector using such sites you will need to transform the vector into a dam host and make fresh DNA.

The vector backbone contains immediate early promoter of cytomegalovirus ($P_{CMV\,IE}$) for protein expression, SV40 origin for replication in mammalian cells expressing SV40 T-antigen, pUC origin of replication for propa $gation \ in \ \textit{E. coli}, \ and \ f1 \ origin \ for \ single-stranded \ DNA \ production. \ SV40 \ polyadenylation \ signals \ (SV40 \ poly \ A)$ direct proper processing of the 3'-end of the reporter mRNA.

SV40 early promoter (P_{SV40}) provides neomycin resistance gene (Neo^r) expression to select stably transfected eukaryotic cells using G418. Bacterial promoter (P) provides kanamycin resistance gene expression (Kan^r) in E. coli. Kan^r/Neo^r gene is linked with herpes simplex virus (HSV) thymidine kinase (TK) polyadenylation

Expression in mammalian cells

pKillerRed-mem vector can be transfected into mammalian cells by any known transfection method. CMV promoter provides strong, constitutive expression of memrane-targeted KillerRed in many cell types. If required, stable transformants can be selected using G418 [Gorman 1985].

Note: KillerRed shows no cell toxic effects before light activation. Upon green light irradiation KillerRed generates reactive oxygen species (ROS) that damage the neighboring molecules.

Propagation in E. coli

Suitable host strains for propagation in E. coli include DH5alpha, HB101, XL1-Blue, and other general purpose strains. Plasmid incompatibility group is pMB1/CoIE1. The vector confers resistance to kanamycin (30 µg/ml) to E. coli hosts. Copy number in E. coli is about 500.

References

Gorman, C. (1985). "High efficiency gene transfer into mammalian cells." In: DNA cloning: A Practical Approach, Vol. II. Ed. by Glover. (IRL Press, Oxford, U.K.) Pp. 143-190.

Haas, J. et al. (1996) "Codon usage limitation in the expression of HIV-1 envelope glycoprotein." Curr Biol, 6 (3): 315-324 / pmid: 8805248

Skene, J.H. and I. Virág (1989) "Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43." J Cell Biol, 108 (2): 613-624 / pmid: 2918027

KillerRed-related materials (also referred to as "Products") are intended for research use only.

The CMV promoter is covered under U.S. Patents 5,168,062 and 5,385,839, and its use is permitted for research purposes only. Any other use of the CMV promoter requires a license from the University of Iowa Research Foundation, 214 Technology Innovation Center, Iowa City, IA 52242.